On Subalgebras of C*-algebras

نویسنده

  • WILLIAM B. ARVESON
چکیده

In this note we announce some new methods and results in the theory of nonnormal Hilbert space operators and nonself ad joint operator algebras. A main difficulty in the subject has been the apparent absence of relations between, say, a nonself ad joint algebra of operators and its generated C*-algebra. For example, given full information about the norm-closed algebra P(T) generated by all polynomials in a given (nonnormal) operator T, what can one say about the C*-algebra C*(T) generated by T and the identity? While one cannot expect much of an answer in general, we will describe here a class of operators and operator algebras for which these relations are as simple as one could hope for. All C*-algebras are assumed to contain an identity (written as e)y L(H) denotes the algebra of all bounded operators on a Hilbert space H, and C*(S) stands for the C*-algebra generated by 5 and the identity where 5 is either an operator or a subset of a C*-algebra. An operator is irreducible if it commutes with no nontrivial projections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CHARACTERIZATIONS OF EXTREMELY AMENABLE FUNCTION ALGEBRAS ON A SEMIGROUP

Let S be a semigroup. In certain cases we give some characterizations of extreme amenability of S and we show that in these cases extreme left amenability and extreme right amenability of S are equivalent. Also when S is a compact topological semigroup, we characterize extremely left amenable subalgebras of C(S), where C(S) is the space of all continuous bounded real valued functions on S

متن کامل

Certain subalgebras of Lipschitz algebras of infinitely differentiable functions and their maximal ideal spaces

We study an interesting class of Banach function algebras of innitely dierentiable functions onperfect, compact plane sets. These algebras were introduced by Honary and Mahyar in 1999, calledLipschitz algebras of innitely dierentiable functions and denoted by Lip(X;M; ), where X is aperfect, compact plane set, M = fMng1n=0 is a sequence of positive numbers such that M0 = 1 and(m+n)!Mm+n ( m!Mm)...

متن کامل

C*-algebras on r-discrete Abelian Groupoids

We study certain function algebras and their operator algebra completions on r-discrete abelian groupoids, the corresponding conditional expectations, maximal abelian subalgebras (masa) and eigen-functionals. We give a semidirect product decomposition for an abelian groupoid. This is done through a matched pair and leads to a C*-diagonal (for a special case). We use this decomposition to study ...

متن کامل

REDEFINED FUZZY SUBALGEBRAS OF BCK/BCI-ALGEBRAS

Using the notion of anti fuzzy points and its besideness to and nonquasi-coincidence with a fuzzy set, new concepts in anti fuzzy subalgebras in BCK/BCI-algebras are introduced and their properties and relationships are investigated.

متن کامل

On permutably complemented subalgebras of finite dimensional Lie algebras

Let $L$ be a finite-dimensional Lie algebra. We say a subalgebra $H$ of $L$ is permutably complemented in $L$ if there is a subalgebra $K$ of $L$ such that $L=H+K$ and $Hcap K=0$. Also, if every subalgebra of $L$ is permutably complemented in $L$, then $L$ is called completely factorisable. In this article, we consider the influence of these concepts on the structure of a Lie algebra, in partic...

متن کامل

Various topological forms of Von Neumann regularity in Banach algebras

We study topological von Neumann regularity and principal von Neumann regularity of Banach algebras. Our main objective is comparing these two types of Banach algebras and some other known Banach algebras with one another. In particular, we show that the class of topologically von Neumann regular Banach algebras contains all $C^*$-algebras, group algebras of compact abelian groups and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007